Voltammetric Determination of LSD with a Schiff Base – Chemically Modified Electrode in Aqueous Solution

Authors

  • Maria Fernanda M. Ribeiro Universidade de São Paulo – USP- Avenida Bandeirantes, 3900 – Ribeirão Preto – SP – Brazil
  • Erica N. Oiye Universidade de São Paulo – USP- Avenida Bandeirantes, 3900 – Ribeirão Preto – SP – Brazil
  • Juliana M. T. Katayama Universidade de São Paulo – USP- Avenida Bandeirantes, 3900 – Ribeirão Preto – SP – Brazil
  • José W. C. Junior Universidade Federal de Santa Catarina - Rua Pomerode, 710 – Blumenau – SC – Brazil
  • Edward R. Dockal Universidade Federal de São Carlos - Rod. Washington Luis, km 235 - São Carlos - SP – Brazil
  • Marcelo Firmino de Oliveira Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - USP - Ribeirão Preto

DOI:

https://doi.org/10.17063/bjfs9(4)y2020440-458

Keywords:

forensic electroanalysis, LSD, Schiff bases, carbon paste, chemically modified electrodes

Abstract

In recent years, practical, inexpensive, and highly specific electroanalytical methods based on modified electrodes have been increasingly developed for forensic science. Simple modification of the carbon paste electrode with Schiff base complexes has become a promising strategy to detect and quantify narcotics. In this context, we aimed to develop voltammetric methods to quantify lysergic acid diethylamide (LSD) by using a carbon paste electrode modified with the complex [UO2(Ac-ophen)]·H2O. The use of an aqueous solution of KCl as supporting electrolyte makes the methodology less polluting, which contrasts with methods that still employ toxic solvents. The developed method for Differential Pulse Voltammetry provides a linear response at various concentrations of LSD and affords analytical curves with standard deviation, detection, and quantification limits around 2.45, 0.625, and 2.08 μmol L-1, respectively. The recovery values of 103 and 108% prove that the developed method is suitable for application in forensic science.

References

Drug Enforcement Administration - Drugs of abuse: A DEA Resource Guide, 2017. Retrieved from https://www.dea.gov/sites/default/files/2018-06/drug_of_abuse.pdf.

Passie T, Halpern JH, Stichtenoth DO, Emrich HM, Hintzen A. The pharmacology of lysergic acid diethylamide: a review. CNS Neurosci Ther. 2008;14(4):295–314. https://doi.org/10.1111/j.1755-5949.2008.00059.x

Merli D, Zamboni D, Protti S, Pesavento M, Profumo A. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry. Talanta. 2014;130:456–461. https://doi.org/10.1016/j.talanta.2014.07.037

Canezin J, Cailleux A, Turcant A, LeBouil A, Harry P, Allain P. Determination of LSD and its metabolites in human biological fluids by high performance liquid chromatography with electrospray tandem mass spectrometry. J Chromatogr B. 2001;765(1):15–27. https://doi.org/10.1016/S0378-4347(01)00386-3

National Institute on Drug Abuse - Epidemiologic Trends in Drug Abuse, Volume 1, 2002. Retrieve from https://archives.drugabuse.gov/sites/default/files/vol1_1202.pdf.

Cody JT. Chapter 4: Hallucinogens. In: Bogusz MJ, Handbook of analytical separations. Amsterdam: Elsevier Science BV; 2008. P.175–20. https://doi.org/10.1016/S1567-7192(06)06004-9

Reuschel SA, Eades D, Foltz RL. Recent advances in chromatographic and mass spectrometric methods for determination of LSD and its metabolites in physiological specimens. J Chromatogr B. 1999;733:145-159. https://doi.org/10.1016/S0378-4347(99)00189-9

McDonald PA, Martin CF, Woods DJ, Baker PB, Gough TA. An analytical study of illicit lysergide. J Forensic Sci. 1984;29(1):120-130. https://doi.org/10.1520/JFS11642J

Marta RFLO. Metabolism of lysergic acid diethylamide (LSD): an update. Drug Metab Rev. 2019;51(3):378-387. https://doi.org/10.1080/03602532.2019.1638931

United Nations Office on Drugs and Crime (UNODC). World Drug Report 2017. Retrieve from https://wdr.unodc.org/wdr2019/.

Polícia Federal. Estatística de Drogas Apreendidas. Retrieved from http://www.pf.gov.br/imprensa/estatistica/drogas/.

Zawilska JB, Kacela M, Adamowicz P. NBOMes-High Potent and Toxic Alternative of LSD. Front Neurosci. 2020;14(78):1-15. https://doi.org/10.3389/fnins.2020.00078

Scientific working group for the analysis of sized drugs (SWGDRUG). Recommendations. Retrieved from http://www.swgdrug.org/Documents/SWGDRUG%20Recommendations%20Version%208_FINAL_ForPosting_092919.pdf.

United Nations International Drug Control Programme (UNDCP). Rapid on-site screening of drugs of abuse - A summary of commercially available products and their applications: guidance for the selection of suitable products Part I Biological specimens. Retrieved from https://www.unodc.org/pdf/scientific/Scitec18_final1.pdf.

Bruni AT, Velho JA, de Oliveira MF. Fundamentos da química forense. 1. ed. Campinas: Editora Millennium; 2012. 358 p.

Johansen SS, Jensen JL. Liquid chromatography-tandem mass spectrometry determination of LSD, iso-LSD, and the main metabolite 2-oxo-3-hydroxy-LSD in forensic samples and application in forensic case. J Chromatogr B. 2005;825(1):21-28. https://doi.org/10.1016/j.jchromb.2004.12.040

Pietsch J, Schulz K, Korner B, Trauer H, Drebler J, Gey M. Alternative method for forensic determination of lysergic acid diethylamide and related compounds in body fluids by liquid-liquid extraction and HPLC with fluorescence detection. Chromatographia. 2004;60(1):89-92. https://doi.org/10.1365/s10337-004-0344-3

Musshoff F, Daldrup T. Gas chromatographic/mass spectrometric determination of lysergic acid diethylamide (LSD) in serum samples. Forensic Sci int. 1997;88(2):133-140. https://doi.org/10.1016/S0379-0738(97)00063-7

Stradiotto NR, Yamanaka H, Zanoni MVB. Electrochemical sensors: a powerful tool in analytical chemistry. J Brazil Chem Soc. 2003;14(2):159-173. https://doi.org/10.1590/S0103-50532003000200003

Shaw L, Dennany L. Applications of electrochemical sensors: forensic drug analysis. Curr Opin Electrochem. 2017;3:23-28. https://doi.org/10.1016/j.coelec.2017.05.001

Oiye EN, de Figueiredo NB, de Andrade JF, Tristão HM, de Oliveira MF. Voltammetric determination of cocaine in confiscated samples using a cobalt hexacyanoferrate film-modified electrod. Forensic Sci Int. 2009;192:94-97. https://doi.org/10.1016/j.forsciint.2009.08.004

Garrido JMPJ, Borges F, Brett CMA, Garrido EMPJ. Carbon nanotube β-cyclodextrin-modified electrode for quantification of cocaine in seized street samples. Ionics. 2016;22(12):2511–2518. https://doi.org/10.1007/s11581-016-1765-3

Ribeiro MFM, Oiye EN, Katayama JMT, Ipólito AJ, de Oliveira MF. Simple and fast analysis of lsd by cyclic voltammetry in aqueous medium. ECS Transactions. 2017;80(10):1259-1268. https://doi.org/10.1149/08010.1259ecst

Tadini MC, Balbino MA, Eleoterio IC, de Oliveira LS, Dias LG, Demets GJF, de Oliveira MF. Developing electrodes chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA) by voltammetry. Electrochim Acta. 2014;121:188-193. https://doi.org/10.1016/j.electacta.2013.12.107

Couto RAS, Costa SS, Junior BM, Pacheco JG, Fernandes E, Carvalho F, Rodrigues CMP, Delerue-Matos C, Braga AAC, Gonçalves LM, Quinaz, MB. Electrochemical sensing of ecstasy with electropolymerized molecularly imprinted poly(o-phenylenediamine) polymer on the surface of disposable screen-printed carbon electrodes. Sensor Actuat B. 2019;290:378–386. https://doi.org/10.1016/j.snb.2019.03.138

Oiye EM, Katayama JMT, Ribeiro MFM, de Oliveira MF. Electrochemical analysis of 25H-NBOMe by square wave voltammetry. Forensic Chemi. 2017;5:86-90. https://doi.org/10.1016/j.forc.2017.07.001

Souza GA, Pimentel DM, Lima AB, Guedes TJ, Arantes LC, de Oliveira AC, Sousa RMF, Muñoz RAA, dos Santos WTP. Electrochemical sensing of NBOMes and other new psychoactive substances in blotting paper by square-wave voltammetry on boron-doped diamond electrode. Anal Methods. 2018;10:2411-2418. https://doi.org/10.1039/C8AY00385H

Balbino MA, Oiye EN, Ribeiro MFM, Júnior JWC, Eleotério IC, Ipólito AJ, de Oliveira MF. Use of screen-printed electrodes for quantification of cocaine andΔ9-THC: adaptions to portable systems for forensic purposes. J Solid State Electr. 2016;20:2435-2443. https://doi.org/10.1007/s10008-016-3145-3

Balbino MA, de Menezes MM, Eleoterio IC, Saczk AA, Okumura LL, Tristão HM, de Oliveira MF. Voltammetric determination of Δ9-THC in glassy carbon electrode: An important contribution to forensic electroanalysis. Forensic Sci Int. 2012;221:29–32. https://doi.org/10.1016/j.forsciint.2012.03.020

Fatibello-Filho O, Dockal ER, Marcolino-Júnior LH, Teixeira MFS. Electrochemical modified electrodes based on metal-salen complexes. Anal Lett. 2007;40(10):1825–1852. https://doi.org/10.1080/00032710701487122

Oiye EN, Ribeiro MFM, Katayama JMT, Tadini MC, Balbino MA, Eleotério IC, Magalhães J, Castro AS, Silva RSM, Júnior JWC, Dockal ER, de Oliveira MF. Electrochemical sensors containing Schiff bases and their transition metal complexes to detect analytes of forensic, pharmaceutical and environmental interest: A Review. Cr Rev Anal Chem. 2019;49(6):488-509. https://doi.org/10.1080/10408347.2018.1561242

Teixeira MFS, Marino G, Dockal ER, Cavalheiro ETG. Voltammetric determination of pyridoxine (Vitamin B6) at a carbon paste electrode modified with vanadyl(IV)–Salen complex. Anal Chim Acta. 2004;508(1):79–85. https://doi.org/10.1016/j.aca.2003.11.046

Raymundo-Pereira PA, Teixeira MFS, Fatibello-Filho O, Dockal ER, Bonifácio VG, Marcolino-Junior LH. Electrochemical sensor for ranitidine determination based on carbon paste electrode modified with oxovanadium (IV) salen complex. Mater Sci Eng C. 2013;33(7):4081–4085. https://doi.org/10.1016/j.msec.2013.05.051

de Oliveira LS, Poles APS, Balbino MA, de Menezes MMT, de Andrade JF, Dockal ER, Tristão HM, de Oliveira MF. Voltammetric determination of cocaine in confiscated sample using a carbono paste electrode modified with different [UO2(X-MeOsalen)(H2O)] H2O complexes. Sensors. 2013;13(6):7668-7679. https://doi.org/10.3390/s130607668

de Oliveira LS, Poles APS, Balbino MA, de Menezes MMT, de Andrade JF, Dockal ER, Tristão HM, de Oliveira MF. Voltammetric analysis of cocaine using platinum and glassy carbon electrodes chemically modified with uranyl Schiff base films. Microche J. 2013;110(6):374-378. https://doi.org/10.1016/j.microc.2013.04.017

Ribeiro MFM, Cruz-Junior JW, Dockal ER, McCord BR, de Oliveira MF. Voltammetric determination of cocaine using carbon screen printed electrodes chemically modified with uranyl Schiff base films. Electroanalysis. 2015;27(2):1-8.

Asadi Z, Asadi M, Firuzabadi FD, Yousefi R, Jamshidi M. Synthesis, characterization, anticancer activity, thermal and electrochemical studies of some novel uranyl Schiff base complexes. J Iran Chem Soc. 2014;11(2):423-429. https://doi.org/10.1007/s13738-013-0314-5

Signorini O, Dockal ER, Castellano G, Oliva G. Synthesis and characterization of aquo[N,N´-ethylenebis(3-ethoxysalicylideneaminato)]dioxouranium(VI). Polyhedron. 1996;15:245-255. https://doi.org/10.1016/0277-5387(95)00243-L

Kim SY, Asakura T, Morita Y, Uchiyama G, Ikeda Y. Electrochemical redox reactions of uranium (VI) complexes with multidentate ligands in dimethyl sulfoxide. Radiochim Acta. 200593(2):75-81.

Mizuoka K, Kim SY, Hasegawa M, Hoshi T, Uchiyama G, Ikeda Y. Electrochemical and spectroelectrochemical studies on UO2(saloph)L (saloph = N,N‘-Disalicylidene-o-phenylenediaminate, L = Dimethyl Sulfoxide or N,N-Dimethylformamide). Inorg Chem. 2003;42(4):1031-1038. https://doi.org/10.1021/ic0260926

Kihara S, Yoshida Z, Aoyagi H, Maeda K, Shiral O, Kitatsuji Y, Yoshida Y. A critical evaluation of the redox properties of uranium, neptunium and plutonium ions in acidic aqueous solutions. Pure Appl Chem. 1999;71:1771-1807. https://doi.org/10.1351/pac199971091771

Sipos L, Galus Z. Redox processes of uranium (VI), (V), (IV), and (III) in acetate buffers. Inorg Nucl Chem Lett. 19717(3):299-304. https://doi.org/10.1016/0020-1650(71)80209-X

Gao S, Lan WB, Lin YW, Liao LF, Nie CM. Molecular recognition of α,β-unsaturated carbonyl compounds and chiral guests by uranyl-salophen receptors. Acta Phys-Chim Sin. 2016;32(3):683-690. https://doi.org/10.3866/PKU.WHXB201512302

Downloads

Published

2020-09-11

How to Cite

M. Ribeiro, M. F., N. Oiye, E., M. T. Katayama, J., W. C. Junior, J. ., R. Dockal, E., & Firmino de Oliveira, M. (2020). Voltammetric Determination of LSD with a Schiff Base – Chemically Modified Electrode in Aqueous Solution. Brazilian Journal of Forensic Sciences, Medical Law and Bioethics, 9(4), 440–458. https://doi.org/10.17063/bjfs9(4)y2020440-458

Issue

Section

Artigo Original