The Differentiation of Primary and Secondary Bead by Metallography

Authors

DOI:

https://doi.org/10.17063/bjfs10(1)y202014-35

Keywords:

Bead, Globule, Metallography, Fire investigation, Forensic science

Abstract

There is a lack in literature about forensic fire investigations due to electrical causes, such as consistent and reproducible techniques for globules and beads presents in wires. Although materials science and metallurgy have available techniques for copper melting analysis, there is not a consensus about which of those methods would be appropriate. Thus, this study aims to discuss characteristics that would make it possible to distinguish between globules and beads through metallographic examination in traces obtained from real fire scenes. Therefore, it was possible to establish which of them had primary or secondary characteristics of fusion trace using metallography. Thus, when corroborated with other elements of the scene this conclusion allows criminal expert to conclude about the circumstances of the fire. Although it is not an innovative technique, the development of the present study is relevant regarding the absence of scientific studies dealing with this topic mainly in Brazil.

Author Biography

André Carrara Cotomácio, Instituto De Criminalística De São Paulo

Engenheiro de Segurança do Trabalho, é Mestre em Engenharia de Produção e Graduado em Engenharia de Controle e Automação. Possui MBA em Finanças e Pós-Graduação em Administração de Empresas. É Pós-Graduando em Auditoria, Gestão e Perícia Ambiental (2019); e em Engenharia Diagnóstica: Patologia, Desempenho e Perícias na Construção Civil (2020). Atua como Perito Criminal no Instituto de Criminalística da Superintendência de Polícia Técnico-Científica do Estado de São Paulo, na área de Engenharia Forense.

References

Cordioli C. Incêndios com origem em fenômeno elétrico. In: ARAGAO, R.F. Incêndios e explosivos: uma introdução à engenharia forense. 2 ed. Campinas: Millennium, 2020.

DeHaan JD, Icove DJ. Kirk’s fire investigation. 7. ed. NY: Pearson, 2011.

Aragao R. Processos e fontes de ignição. In: Incêndios e explosivos: uma introdução à engenharia forense. 2 ed. Campinas: Millennium, 2020.

Kleinübing R. Diagnose de incêndios e explosões em veículos. In: ARAGAO, R. F. Incêndios e explosivos: uma introdução à engenharia forense. 2 ed. Campinas: Millennium, 2020.

NFPA. 2017. NFPA 921: Guide for Fire and Explosion Investigations. Quincy, MA: National Fire Protection Association.

Motelievicz ME, Acordi CF. Curto-circuito como fenômeno termoelétrico relacionado a causas de incêndios em edificações: mitos e verdades. Ignis: revista técnico científica do Corpo de Bombeiros Militar de Santa Catarina, Florianópolis, v. 2, n. 1, 2017.

Medeiros VS. Incêndio no Flamengo: Relato do caso do Ninho do Urubu. Revista Perícia Federal, ano XV, n. 43, p. 36-41, 2019.

DeHaan JD, Icove DJ. Kirk’s fire investigation. 8. ed. NY: Pearson, 2019.

Babrauskas V. Arc Beads from Fires: Can ‘Cause’ Beads Be Distinguished from ‘Victim’ Beads by Physical or Chemical Testing? J. Fire Protection Engineering, 14, p. 125-147, 2004. https://doi.org/10.1177/1042391504036450

Babrauskas V. Research on electrical fires: The state of the art. Fire Safety Science, v. 9, p. 3-18, 2008. https://doi.org/10.3801/IAFSS.FSS.9-3

Johnson DK. Suppressed Evidence. In: Arp, R.; Barbone, S.; Bruce, M. Bad Arguments: 100 of the Most Important Fallacies in Western Philosophy. 1. Ed. John Wiley & Sons Ltd, 2019. https://doi.org/10.1002/9781119165811.ch98

Buc EC, Reiter D, Battley J, Sing TB, Sing TM. Method to characterize damage to conductors from fire scenes. Fire and Materials 2013, 13th International Conference and Exhibition, Conference Proceedings, p. 657-666, 2013.

Roby RJ, Mcallister J. Forensic investigation techniques for inspecting electrical conductors involved in fire. Journal National Institute of Justice, Office of Justice Programs, US Department of Justice, 2012.

Wright SA, Loud JD, Blanchard RA. Globules and beads: what do they indicate about small-diameter copper conductors that have been through a fire? Fire Technology, v. 51, n. 5, p. 1051-1070, 2015. https://doi.org/10.1007/s10694-014-0455-9

Wang L, Liang D, Mo S. Judgment model for identifying the type of electric molten mark in fire. Journal of Computational Methods in Sciences and Engineering, v. 16, n. 1, p. 125-133, 2016. https://doi.org/10.3233/JCM-160607

Meng QS. Analysis of Copper Wires Short Circuited Melted Mark. In: Applied Mechanics and Materials. Trans Tech Publications Ltd, p. 94-98, 2014. https://doi.org/10.4028/www.scientific.net/AMM.511-512.94

Voort GFV. Copper Color Metallography. Buehler Ltd. Disponível em: <https://www.buehler.com/assets/solutions/technotes/copper.pdf>. Acesso em 07 de julho de 2020.

Hasse S. Guβ- und Gefügefehler. Berlin: Schiele und Schön, 2002.

Li Y, Liu X. Study on metallographic structure of melted breakpoint mark for copper wire current overloading. Procedia Engineering, v. 135, p. 482-485, 2016. https://doi.org/10.1016/j.proeng.2016.01.159

Published

2020-10-27

How to Cite

Cotomácio, A. C., & Schröer, G. (2020). The Differentiation of Primary and Secondary Bead by Metallography. Brazilian Journal of Forensic Sciences, Medical Law and Bioethics, 10(1), 14-35. https://doi.org/10.17063/bjfs10(1)y202014-35

Issue

Section

Original Article